
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

PriRanGe: Privacy-Preserving
Range-Constrained Intersection Query Over

Genomic Data
Yaxi Yang, Yao Tong, Jian Weng, Member, IEEE , Yufeng Yi, Yandong Zheng,

Leo Yu Zhang, Member, IEEE and Rongxing Lu, Fellow, IEEE

Abstract—Genomic data is being produced rapidly by both individuals and enterprises, and outsourcing this ever-increasing data into
clouds is promising for cutting the cost of data owners and mining the wealth of genomic data at a larger scale. However, genome
carries sensitive information about individuals, and it is challenging to securely and efficiently perform analysis on remotely hosted
genomic databases. In this paper, we present a privacy-preserving range-constrained intersection query scheme on genomic data. To
achieve security and efficiency, we propose a protocol to fulfill range-constrained intersection query, named PriRanGe. With PriRanGe,
a client can securely query genomic data in a specific range in a database while keeping this whole process private. The security of our
design targets genomic database confidentiality, query range/result confidentiality, and access pattern protection, and the advantage in
efficiency is due to most employed primitives are symmetric. We thoroughly evaluated our design by security proof, experimental
analysis and comparison to the state-of-the-art works, all of which support the conclusion that this design is both secure and fast.

Index Terms—Genomic Data, Range-constrained Intersection Query, Garbled Circuits, Secure Multiparty Computation.

F

1 INTRODUCTION

Technical improvements in DNA sequencing [1] have
paved the way for genomic testing: the costs for sequencing
a whole genome have fallen from 10 million USD to< 1, 000
USD in the last ten years, and individuals can easily afford
to test their original genomic data in a sequencing lab [2].
Powered with big genomic data, genomic testing services
are becoming increasingly popular, e.g., MyHeritage1, an-
cestry2, and PatientsLikeMe3. Among all these tests and
alike services, one underlying technique is to find the inter-
section between a piece of genomic query and a genomic
database (e.g., CNGB, NCBI) within a specific range [3].
An example is shown in Fig. 1, after a client gets his/her
genomic data from the sequence lab, he/she may want to
request a genomic testing service and launch a range query
to a database provider. Then, the database provider searches
for the related variants within the queried range that is
defined by a lower and upper position in the entire genome,
and then responds the results to the client [4, 5].

• Y. Yang, J. Weng, Y. Yi are with the College of Information Science
and Technology, Jinan University, Guangzhou, China. (email: E-mail: see
yxyangjnu@gmail.com, cryptjweng@gmail.com, yyfeng5834@gmail.com)

• Y. Tong is with Guangzhou Fongwell Data Limited Company, Guangzhou
510632, China. (email: melody@fongwell.com)

• L. Zhang is with the School of Information Technology, Deakin University,
VIC, Australia. (email: leo.zhang@deakin.edu.au)

• Y. Zheng and R. Lu are with the Faculty of Computer Science, Uni-
versity of New Brunswick, Fredericton, NB E3B 5A3, Canada (e-mail:
yzheng8@unb.ca, rlu1@unb.ca).

1. https://myheritage.com
2. https://www.ancestry.com
3. https://www.patientslikeme.com

22021/1/16

The disease-implicated 
variants provider 

( database provider )

Sequence Lab

DNA sampleGenomic 
variants

Client 1 Client 2

Range [a, b]

Result

Fig. 1: The structure of genomic range query service.

However, it is well-accepted that genomic data is highly
sensitive and can be seen as an identifier of an individual [6].
On the one hand, a client, who intends to retrieve genomic
sequences of interest within the queried range, needs to be
restricted. Otherwise, the client can identify an individual
in the database by utilizing genomic domain knowledge,
such as the relative frequency of variants in the entire
genome, even though the database is made anonymous in
the first place [7, 8]. Therefore, when receiving queries about
some genomic variants of the database from a client, the
provider needs to make this query private and constrain the
returned matches to the exact range. On the other hand, the
query result and the query range of the client also need
to be private since the specific range of an individual’s
entire genome leaks information about the query sequence.
If the range or query results are learned by the database
provider, the provider can infer sensitive information (e.g.,

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3205700

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:27:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

potential disease) about the client [4]. For example, it is
reported in [4] that the queried range can actually imply the
underlying test. Therefore, when receiving a client’s query
about some genomic variants of a database, the provider
needs to ensure the returned result only matches the exact
range without knowing the query and the query range. This
dual privacy requirement on both the client query and the
database makes it difficult to use traditional range query
methods. For example, if we trivially apply the traditional
range query methods in [9–11] to the case of genomic data, it
will result in leakage of the query range and access pattern.
To solve those privacy problems, some researchers utilize
the techniques of secure multi-party computation (MPC)
to build secure genomic query protocols [12–14]. However,
those methods bring expensive client-side computation and
communication burdens.

To relieve client-side burdens, outsourcing computation
and storage to the cloud is now an effective method and has
been widely studied [19, 20]. In the outsourced setting, the
database provider securely outsources data to a (or more)
cloud server(s). When a client issues a range query to the
provider, the provider can delegate the cloud to process
the client’s query and search in the encrypted database
in a privacy-preserving manner. Several privacy-preserving
protocols [15, 16] are proposed to perform multiple types
of queries on genomic databases in the outsourcing setting.
However, none of these protocols consider the privacy of
access pattern, i.e., the information on how the outsourced
database is accessed is leaked. If the access pattern is ex-
posed to the cloud server, the server can infer sensitive
genomic information about the client’s query and db, as
reported in [21, 22]. Besides, there exist some works about
range query in the outsourced setting [11, 23], but their
schemes aim differently from ours. In particular, their de-
signs aim to determine whether a given condition is met
within a range of a database (i.e., general sense range query),
while our design firstly determines a query range and then
finds all the intersection of the query array and the defined
range within db (i.e., genome-specific range query).

Motivated by the above arguments, in this paper, we
propose an efficient privacy-preserving range-constrained
intersection query scheme over genomic data (PriRanGe) in
the outsourcing setting. Besides the confidentiality of the
query and the database, we also aim to protect the access
pattern of the range-constrained query over genomic data
without sacrificing efficiency. The main challenge comes
from the conflicting goals between the efficiency require-
ment and strong security requirements of each party (espe-
cially the access pattern protection).

In the literature of privacy-preserving applications (no
genomic data-related), there are some customized works
for computing private intersection in the outsourced set-
ting [24, 25]. However, the proposed scheme in [24] leaks
the size of the intersection to the cloud server, and [25]
focuses on computing the cardinality of the intersection
and the database owner needs to participate in the online
computation. Hence, both designs do not protect the access
pattern. There are also some general techniques, including
Private Information Retrieval (PIR) [17, 26] and Oblivious
RAM (ORAM) [27], that can be used to protect the access
pattern privacy in the outsourced setting. But PIR [17, 26]

relies on time-consuming homomorphic encryptions, and
ORAM [27] requires the continuous shuffling of data chunks
for every single access, while the number of elements in
a database could be large. Clearly, trivially applying these
methods to the range query of genomic data will only result
in solutions with inferior security or efficiency.

As a workaround, we design the PriRanGe protocol
by combining some basic MPC primitives, including secret
sharing, garbled circuits, oblivious transfer (OT) extension
[28], and oblivious distributed key pseudorandom function
(Odk-PRF) [25]. The obvious advantage of these primi-
tive collections is that most of them rely on symmetric
encryption (with OT extension using a few asymmetric
encryptions), which enables PriRanGe with the potential
for high efficiency. In PriRanGe, we put forward two sub-
protocols, the Distributed Intersection Computation (DIC)
protocol and the Secret-Shared Oblivious Shuffling (SOSF)
protocol, to enable two non-colluding cloud servers to fulfill
the range-constraint intersection query without knowing
how the outsourced database is accessed and what is being
accessed.

To sum up, the contributions of this work are as follows:
• We construct the PriRanGe protocol by using secret shar-

ing, garbled circuits and Odk-PRF. We utilize this protocol
to realize privacy-preserving range-constrained intersec-
tion query over genomic data.

• We design the DIC and SOSF protocols as building blocks
of PriRanGe to enable two non-colluding cloud servers to
fulfill the range-constraint intersection query from clients
without leaking information about the access pattern.
These protocols are of independent research interests in
their own rights.

• We formally prove that our protocols are secure in the
semi-honest adversary model. We experimentally evalu-
ate PriRanGe on real human genomic data, which vali-
dates its efficiency.

The rest of this work is organized as follows. The related
works are introduced in Sec. 2, and the systematic prob-
lem definition is presented in Sec. 3. Sec. 4 introduces the
preliminary knowledge used in our design, followed by the
building blocks and the details of PriRanGe in Sec. 5. The
security analyses and experimental results are respectively
given in Secs. 6 and 7. The concluding remarks are drawn
in Sec. 9.

2 RELATED WORKS

In this section, we briefly review some recently pro-
posed schemes about the secure genomic query based on
a outsourced model, range query in outsourced setting, and
oblivious shuffling methods, which is used to protect access
pattern.
Secure Genomic Query in Outsourced Database. In the
outsourced two-cloud setting, genomic databases are out-
sourced to two cloud servers and the main computation
tasks are performed between those servers. In [29], Atallah
et al. proposes a protocol that securely computes the edit
distance of two sequences in two remote servers. To achieve
better performance, there were some other works [15–18]
under the model of two non-colluding semi-honest servers.
In [15, 16], the encrypted databases were outsourced to one

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3205700

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:27:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE 1: Comparison of different genomic query protocols.

Properties Al et al. [15] Sun et al. [4] Nassar et al. [16] Cheng et al. [17] Schneider et al. [18] PriRanGe

Outsourced setting ! ! ! ! ! !

Queried range privacy % ! ! ! ! !

Queried result privacy ! ! % ! ! !

Hide access pattern % % % ! % !
Query method OPE + HE MSSE HE GC + HE OT + SS GC + OT

Query type Rank query Range query Similarity query Similarity query Similarity query Range query

Notes. OPE corresponds to order preserving encryption. MSSE corresponds to multi-keyword symmetric searchable encryption. HE is
homomorphic encryption. GC represents garbled circuit. SS represents secret sharing.

cloud server and the encrypted keys are stored in another
server. Then a client would launch a genomic query with
those two servers. However, the schemes in [15, 16] need the
clients to stay online and communicate with each servers,
which results in high communication cost on the client-side.
To solve this problem, Cheng et al. [17] and Schneider et
al. [18] adopted the same model that outsourced all the
databases and computation to two cloud servers. Next, the
two cloud servers performed protocols on secret shared data
and returned the query results to the clients.

Range Query in Outsourced Setting. In the literature, var-
ious privacy-preserving range query schemes are proposed
[9–11, 23, 30–33] for range query in a outsourced setting.
Li et al. [9] designed a PB-tree structure and associated
algorithms to support searching and updating a database
in the cloud. Zuo et al. [10] propose a range query protocol
via a binary tree, which was a symmetric-key-based method
for a private database. Besides, Liang et al. [11] presented a
privacy-preserving range query in a public cloud. They uti-
lized a tree-based structure and homomorphic encryption to
realize their goal. However, those methods do not consider
the information leakage of the access pattern. Next, Wu et
al. [23] propose an efficient multi-dimensional range query
via a cube encoding method. For constrained range query,
Li and Teng et al. [31, 34] propose constrained range query
protocols for spatial queries within a bounded range or a
geometric range. However, their methods did not focus on
the security problems in constrained range query.

As for the genomic scenario, there exist some works
about range query for genomic databases [2, 4, 5, 12, 35].
In [2, 12], the authors used additively homomorphic en-
cryption to count the number of genetic markers matching
in a certain range of digitized genomes. However, their
methods are relatively inefficient and take hours to search
in million-sized genomic variants. To improve the efficiency,
Kolesnikov et al. [35] propose an efficient method based
on the OT extension. This method could also be applied
to genomic sub-string matching and extended to the case
of genomic variants counts within a range if the proposed
protocol is executed in a bitwise manner. In [5], the authors
propose a verifiable range query scheme. When a client
wanted to query a certain range in a database, the client
needed to utilize a proposed signature scheme to prove that
his/her queried sequence was genuine and not tampered
with. However, those methods did not consider hiding the
searching range of their queries. Sun et al. [4] propose
a range query over space-consuming raw genomic data
based on a multi-keyword symmetric searchable encryp-

tion scheme and a hierarchical index structure. But their
system model involves a trusted authority for encrypting
and decrypting query range and returned results, which
reduces its practicality for real usage. To sum up, existing
range query schemes still have some limitations in the terms
of efficiency and security. For clarity, we summarize the
differences between our work and previous secure schemes
in Table 1.
Oblivious Shuffling. There are some works about oblivi-
ously sorting an entire array of elements in different applica-
tion scenarios [17, 36–38]. In [17, 37], the authors employed
homomorphic encryption to realize a shuffling method.
Specifically, [17] suggests a secure shuffling protocol in a
outsourced setting, which has the similar functionality of
our SOSF protocol. However, these methods tend to be
inefficient because of the burden introduced by homomor-
phic public-key encryption. The works in [36, 38] provide
shuffling-and-compute methods based on the garbled cir-
cuits. To be specific, Huang et al. [36] designed a shuffling
network to shuffle an intersection results of two sets to
protect the privacy of input sets. Cheng et al. [38] used a
permutation matrix to multiply a set before sorting it. Both
the proposed shuffling methods can cut off the link between
the original input set and the output set, which could protect
the access pattern. Similarly, our SOSF protocol also aims to
protect the access pattern through oblivious shuffling. But
unlike previous techniques, it is customized for XOR-shared
values in the delegate setting. Moreover, as will be shown
in Sec. 7, our SOSF protocol outperforms Cheng’s shuffling
protocol [17].

3 SYSTEM OVERVIEW

In this section, we first present our system model, and
then give the definition of range-constrained intersection
query, and outline the considered threats to the system and
the goals we want to achieve.

3.1 System Model

As shown in Fig. 2, our system model consists of three
main entities: the database providers DBP , two cloud
servers CS1, CS2, and a client C. Their respective roles are
defined as follows.
• DBP : The database providerDBP is a genomic testing fa-

cility and possesses a large collection of genomic variants
database db. DBP wants to delegate his/her database
to the clouds for remote hosting and management, since
DBP might be a medical center and is not expertise

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3205700

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:27:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Sequence Lab Client (   )

Cloud Server ( )

Cloud Server ( )

Database Provider (    )

DNA sample

Genomic
variants

 𝐝𝐛 1①

 𝐝𝐛 2① 𝐪 2②

 𝐪 1②

③PriRanGe

𝐬2④

𝐬1④

Fig. 2: Overview of our system model.

in data management and not powerful in storage and
computing. However, the cloud servers cannot be fully
trusted. DBP will split his/her data into two shares
〈db〉1, 〈db〉2 by secret sharing and upload the two shares
to two cloud servers, respectively.

• C: A client C can always use his/her DNA sample (e.g.,
blood or saliva) to get his genomic variants from a se-
quence lab. If C wants to search in DBP to check whether
he/she has some potential diseases, C will prepare his/her
query array q and specify a range that possibly contains
the query q and its variants. Then, C divides the query
array q into two shares, 〈q〉1 and 〈q〉2, and sends them
to CS1 and CS2, who will then privately retrieve query
results.

• CS1, CS2: The two servers CS1 and CS2, who are de-
ployed between the client C and the database provider
DBP , have abundant bandwidth, storage, and computing
resources. Upon receiving the shares of query array q
(from C) and db (fromDBP), the two servers interactively
perform the PriRanGe protocol while keeping q and db
private. Finally, the servers return the partial query re-
sults s1 and s2 separately to C, who then combines them
together to obtain the complete query result.

3.2 Range-Constrained Intersection Query

Human DNA consists of four types of bases ([A]denine,
[C]ytosine, [T]hymine, [G]uanine), and different types of
mutations might occur if an individual has potential dis-
eases. A genomic variant marks different types of mutations
of nucleotide, such as [A] → [G] [5]. An individual’s DNA
includes lots of mutations, and each mutation includes
a name of position (pos) in DNA and a base letter (v)
at this position. Under our system model, if the client C
wants to check whether he/she has some genetic diseases, C
will launch a range-constrained intersection query between
his/her query array q and db. This problem is formalized
as follows:

Definition 1. (Range-constrained intersection query) Sup-
pose that db = {db1, · · · , dbn} is a genomic variants database.
Each variant dbi in db consists of a position dbi.pos and a specific
variants dbi.v. Then, give a query array q = {q1, · · · , qm}
within a range of [q1.pos, qm.pos], the same range needs to
be constrained in db, denoted as dbα. Therefore, the range-

position … 5 6 7 8 9 10 11 …

base letter … A G A A G A A …

position 7 8 10 11

base letter A A T A

𝑑𝑏𝑡1−2 𝑑𝑏𝑡1−1 𝑑𝑏𝑡1
𝑑𝑏𝑡2 𝑑𝑏𝑡3

𝑑𝑏𝑡4 𝑑𝑏𝑡5

𝑞1 𝑞2 𝑞3 𝑞4

Fig. 3: An example of range-constrained intersection query.

constrained intersection query is to compute the intersection of
q.v and dbα.v, where





dbα ⊂ db,
dbα = {dbt1 , · · · , dbtm},
[dbt1 .pos, dbtm .pos] = [q1.pos, qm.pos].

For better understanding, we give an example of range-
constrained intersection query in Fig. 3. From this figure,
after constraining the exact range in db, the final intersection
result can be easily determined if no security is required.

3.3 Threat Model
In this work, the database provider and the client are

considered to be honest and will strictly follow the protocol.
However, we assume the two cloud servers are semi-honest,
which means they will honestly follow the proposed proto-
col but they try to learn and deduce the information about
db, q and the query result [17, 18]. Similar to the literature
studies that use two clouds [17, 18, 38, 39], CS1 and CS2 are
assumed to not collude with each other because of interest
conflict. Note that our work focuses on privacy preservation
issues, some other attacks for this system are beyond the
scope of this paper and will be discussed in our future work.
In conclusion, the security requirements that our paper aims
to achieve have three folds:
• Database confidentiality: The two servers should not learn

any information of DBP ’s database db. Besides, client C
should only obtain the intersection results within his/her
queried range and learn nothing about other elements of
db.

• Query confidentiality: After receiving the shares of the
database and query range respectively from DBP and
C, the two servers perform the PriRanGe protocol and
return queried results to C. During the protocol execution
process, servers should not learn anything about C’s query
and the results.

• Access pattern protection: If the two servers CS1 and CS2
have responded to multiple queries and returned all re-
sults to C, servers may record the access patterns of all
queries and link the patterns to launch sophisticated at-
tacks, for example, inferring positions of genomic variants
of db or revealing sensitive information about the queries
[17, 38]. So, to protect access pattern, both servers should
be made oblivious of real access patterns among multiple
queries.

Even though we consider C in our model is honest, cloud
servers can use authentication methods to restrict C’s access

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3205700

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:27:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

and ensure C is registered, which makes our cloud-based
query protocol resistant to more security threats. There are
some password-based authentication methods [40–43] that
can be straightforwardly applied in the PriRanGe protocol.

3.4 Design Goals
Generally speaking, our goal is to delegate the range-

constrained intersection query scheme over genomic data
to the cloud while preserving data privacy. Under the con-
straint of the system and threat models, this work aims to
achieve:
• Privacy preservation: The basic requirement of our proto-

cols is privacy preservation. We aim to not only preserve
the privacy of the outsourced genomic database, query
requests, as well as query results, but also resist the
leakage of access pattern.

• Efficiency: In order to achieve the above security goals,
it will inevitably introduce extra computations for per-
forming intersection query on secret-shared genomic data.
In the proposed scheme, we aim to cut down the com-
putation cost to perform the intersection query while
optimizing the execution time.

4 PRELIMINARIES

In this section, we introduce the necessary background
knowledge about genomic sequence query and some cryp-
tographic building blocks that our work is based on.

4.1 Secure Computation
Yao’s Garbled Circuit: It is a generic approach for construct-
ing a secure two party protocol of any function f formed
by a Boolean circuit. In a garbled-protocol, one party (gen-
erator) needs to prepare the encrypted circuits of function
f . Another party (evaluator) then obliviously computes the
output of the circuits without learning anything about the
generator’s private inputs. To achieve this, the generator
first maps symmetric keys (labels) for each wire of every
gate of a circuit, and then generates an encrypted truth table.
After getting the truth table, the evaluator will perform an
OT protocol to get the keys without revealing his private
inputs. More details of this process can found in [36, 44].
The equality test (EQ(·)) is a simple test used in this paper.
It takes x and y as input, and outputs 1 if x equals y, and 0
otherwise.
Boolean Secret Sharing: For an l-bit value x, it is XOR-
shared into two values over Z`2. Those two values are de-
noted as 〈x〉1 and 〈x〉2 respectively, where 〈x〉1, 〈x〉2 ∈ Z`2.
Then we use 〈x〉1 ⊕ 〈x〉2 = x to recover x.
Oblivious PRF: Oblivious Pseudorandom Function (OPRF)
is one of approaches of MPC, and is achieved by OT exten-
sion. OPRF is a protocol in which one party (sender) gets
a key k of the Pseudorandom Function (PRF) F while the
party (receiver) can obtain the PRF value F(k, x) with input
value x.

Notably, Duong et al. [25] proposes the oblivious dis-
tributed key pseudorandom function, which possesses
XOR-based homomorphic property. To be specific, Odk-
PRF allows the receiver to provide φ XOR-shared in-
puts {〈x〉1, · · · , 〈x〉φ}. Then this functionality produces dis-
tributed keys {〈k〉1, · · · , 〈k〉φ} related to the inputs for the

1-bit Swap …

𝑥2
𝑙

2

1-bit Swap

𝑐𝑖=0/1

𝑥2
𝑙 , 𝑥1

𝑙 /{𝑥2
𝑙 , 𝑥2

𝑙 } 𝑥2
𝑙 , 𝑥1

𝑙 /{𝑥2
𝑙 , 𝑥2

𝑙 }

𝑥2
𝑙

1
𝑥1

𝑙
2

𝑥1
𝑙

1
𝑥2

1
2

𝑥2
1

1
𝑥1

1
2𝑥1

1
1

Fig. 4: The basic circuits of swapping network.

sender, and the receiver obtains F(〈k〉i, 〈x〉i) (1 ≤ i ≤ φ).
In Odk-PRF, the real key can be determined by XORing
all distributed keys k = ⊕φi=1〈k〉i, and the input can be
determined by XORing n inputs as x = ⊕φi=1〈x〉i.

The XOR-based homomorphic property of Odk-PRF en-
sures ⊕φi=1F(〈k〉i, 〈x〉i) = F(⊕φi=1〈k〉i,⊕

φ
i=1〈x〉i) = F(k, x).

The formal definition of Odk-PRF functionality is shown as
follows:
• KeyGen(1λ)→ k: it takes a security parameter λ as input,

and outputs a secret key k.
• KeyShare(k, φ) → {〈k〉1, · · · , 〈k〉φ}: it takes a PRF key k

and the number φ as inputs, and outputs φ shared keys
〈k〉1, · · · , 〈k〉φ, where k = ⊕φi=1〈k〉i.

• KeyEval(〈k〉i, 〈x〉i) → F (〈k〉i, 〈x〉i): it takes a PRF key
〈k〉i and a XOR-shared value 〈x〉i as inputs, and outputs
a PRF value F(〈k〉i, 〈x〉i), where F is an OPRF function.

The security guarantee of Odk-PRF comes from the property
of PRF: F(k, x), F (〈k〉i and 〈x〉i) are randomized and reveal
information about k and xwith a negligible probability (e.g.,
2−λ).
Circuit-based Shuffling Network: Shuffling Network is an
approach for swapping the elements in an array. The work
in [36] proposes a shuffling network based on Yao’s garbled
circuit. In a slightly more detail, a shuffling network is
formed with some basic circuits, and each of them takes
2n inputs along with an additional set of control bits. Each
of the control bits determines whether the fixed pair of
elements should be swapped or not.

As shown in Fig. 4, the basic circuits of the shuffling
network consists of a series of 1-bit swap modules, two
XOR circuits, different input and output wires. The black
input wires represent the circuits generator’s inputs, and
the red ones are controlled by the evaluator. Let ci rep-
resents the i-bit of the permutation seed c. When parsing
through this shuffling network, the shares of two `-bit val-
ues, x1 = x`1 · · ·x21x11 and x2 = x`2 · · ·x22x12, will be merged
by the XOR circuits and swapped according to the value of
ci. If ci = 0, the order of x1 and x2 will not be swapped.
Otherwise, the evaluator will get the swapped values x2
and x1. Specifically, a Waksman network is utilized in a
swapping network to produce any of the n! permutation
function π with n-bit input c for security.

Next, we extend the above example to the general case.
The generator can prepare a swap circuit with the inputs of
an array x1 and permutation function π. Then the evaluator
will evaluate the circuits with the input of another array
x2. Finally, the evaluator will learn a shuffled array π(x1 ⊕
x2). Importantly, the type of the gates (and so π) is known
only to the generator. The evaluator learns nothing about

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3205700

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:27:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

generator’s private inputs since the circuits are constructed
via Yao’s garbled circuit.

5 THE CONSTRUCTION OF PRIRANGE

This section starts with the notation used in our protocol
and the main idea of PriRanGe, followed by the details
of its two building blocks: the DIC Protocol and the SOSF
Protocol, and ends with the full-fledged design of PriRanGe.

TABLE 2: Notations

Symbol Description

λ The security parameter.
PRG(·) A pseudo random number generator.
CS1/2 The first cloud server and the second cloud server.

q The queried set of C.
〈q〉1/2 The share of q to CS1/2.
〈q.v〉1/2 The share of the base letter of q in CS1/2.
〈q.pos〉1/2 The share of the position of q in CS1/2.

db The set of genomic variants of DBP .
〈db〉1/2 The share of db to CS1/2.
〈db.v〉1/2 The share of the base letter of db in CS1/2.
〈db.pos〉1/2 The share of the position of db in CS1/2.

5.1 Notation
For better readability, we list the notations used in Pri-

RanGe in this section. As shown in Table. 2, a queried array
of C is q = {qi}mi=1, and an array of genomic variants of
DBP is db = {dbj}nj=1. One share of the queried array is
〈q〉1, and another share is 〈q〉2. Similarly, the two shares of
the database is denoted as 〈db〉1 and 〈db〉2. Then, 〈q.pos〉1/2
and 〈q.v〉1/2 respectively represent the shared position array
and base letter array, which comprise the query array. Sim-
ilarly, the share of position and base letter of the database
are denoted as 〈db.v〉1/2 and 〈db.v〉1/2, respectively.

5.2 Main Idea of PriRanGe
Firstly, C is advised by the sequence lab to confirm the

range of Single Nucleotide Polymorphisms (SNPs) which
he/she needs to query. As we mentioned above, we assume
C’s query array is q = {q1, · · · , qm} and the queried range
is [q1.pos, qm.pos]. Then, C gives the XOR shares of his/her
query array to CS1 and CS2 for an intersection query.
Therefore, CS1 obtains 〈q〉1 = {〈q1〉1, · · · , 〈qm〉1}, and CS2
obtains 〈q〉2 = {〈q1〉2, · · · , 〈qm〉2}, where 〈q〉1 ⊕ 〈q〉2 = q.
Both 〈q〉1 and 〈q〉2 have m elements, and each element
consists of the shares of positions and variants, e.g., 〈qi〉1 =
(〈qi.pos〉1, 〈qi.v〉1), i ∈ [1,m].

Similarly, DBP outsources his/her genomic variants
database db = {db1, · · · , dbn} to CS1 and CS2 because
of the shortage of local computing and storage resources,
normally m << n. Therefore, CS1 and CS2 obtain one
XOR-share of db, denoted as 〈db〉1 and 〈db〉2, respec-
tively. Both 〈db〉1 and 〈db〉2 have n items, and each item
also consists of the shares of position and variants, e.g.,
〈dbj〉1 = (〈dbj .pos〉1, 〈dbj .v〉1), j ∈ [1, n].

After CS1 and CS2 get shares from C and DBP , the
two servers jointly perform the PriRanGe protocol for re-
sponding a range-constrained intersection result to C. The
PriRanGe protocol consists of the following three steps:

Step 1: Constraining a queried range. CS1 and CS2 firstly
constrain the range of query array, which is [q1.pos, qm.pos],
and select all elements in this range of the database, de-
noted as dbα = {dbt1 , · · · , dbtm}, |dbα| = m. Specifi-
cally, servers can not know plaintexts of the queried range
[q1.pos, qm.pos] in this process. We make use of Yao’s gar-
bled circuit, which is introduced in Sec. 4.1, to achieve this
goal.
Step 2: Computing distributed intersection. After con-
straining the queried range, CS1 possesses two XOR-shared
arrays 〈q.v〉1 and 〈dbα.v〉1, and CS2 also prepares two
XOR-shared arrays 〈q.v〉2 and 〈dbα.v〉2. During this step,
the two servers interactively calculate the intersection of
two arrays q.v and dbα.v, while the result and the size of
q.v ∩ dbα.v can not be revealed to servers. The plaintext of
intersection results is only revealed to C. For this purpose,
we design the DIC protocol to calculating the intersection of
secret shared arrays, as will be discussed in Sec. 5.3.
Step 3: Shuffling the outsourced database. The shuffling
process is formalized as follows: CS1 owns one share 〈db〉1
and randomly picks a permutation function π1. Similarity,
CS2 owns another share 〈db〉2 and randomly picks a per-
mutation function π2. After oblivious shuffling, CS1 obtains
a shuffled share

〈
db′
〉
1

= π1π2(〈db〉1) and CS2 obtains the
other shuffled share

〈
db′
〉
2

= π1π2(〈db〉2), where
{
〈db〉1 ⊕ 〈db〉2 = db,〈
db′
〉
1
⊕
〈
db′
〉
2

= π1π2(db).

To realize this functionality, we design the SOSF protocol,
as will be discussed in Sec. 5.4. This protocol can be ex-
ecuted by two servers offline, which means they shuffle
the databases multiple times to obtain multiple shuffled
databases before/after Steps 1 and 2. And the cloud servers
access to different databases in different queries.

5.3 The Distributed Intersection Computation Protocol

Without loss of generality, we assume two arrays x =
{x1, · · · , xm} and y = {y1, · · · , ym} are XOR-shared to
two servers respectively. Therefore, CS1 takes two arrays
of shared values 〈x〉1 = {〈x1〉1 , · · · , 〈xm〉1} and 〈y〉1 =
{〈y1〉1 , · · · , 〈ym〉1} as the inputs of DIC protocol, and CS2
has the inputs 〈x〉2 = {〈x1〉2, · · · , 〈xm〉2} and 〈y〉2 =
{〈y1〉2, · · · , 〈ym〉2}. Then, we utilize the DIC protocol to
compute the intersection of x and y while keeping the
elements in those two arrays and the size of the intersection
private for servers.

Formally, we present the DIC protocol in Algorithm 1.
Firstly, CS1 acts as Odk-PRF’s receiver and performs m
times OPRF with CS2 (sender), who obtains m keys
{〈k1〉2 , · · · , 〈km〉2} in lines 2-3. Then CS1 and CS2 ob-
tain two PRF arrays F(〈k〉2 , 〈x〉1) and F(〈k〉2 , 〈y〉2) re-
spectively, in lines 4-5. Similarly, CS2 acts as a receiver
and also performs m times OPRF with CS1 (sender) in
lines 6-9. Therefore, CS1 and CS2 obtain F(〈k〉1 , 〈y〉1) and
F(〈k〉1 , 〈x〉2) respectively. Those processes are equivalent to
execute KeyShare(k, φ) m times with φ = 2 in the Odk-PRF
functionality.

Subsequently, CS1 and CS2 utilize the XOR-based homo-
morphic property of Odk-PRF to calculate the PRF values of

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3205700

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:27:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

the PRF arrays on they own. As shown in lines 11 and 16,
CS1 computes:

L1 = F(〈k〉1 , 〈x〉1)⊕ F(〈k〉2 , 〈y〉1)

= {F(〈k1〉1 , 〈x1〉1)⊕ F(〈k1〉2 , 〈y1〉1), · · · ,
F(〈km〉1, 〈xm〉1)⊕ F(〈km〉2, 〈ym〉1)}

= {F(k1, 〈x1〉1 ⊕ 〈y1〉1), · · · ,F(km, 〈xm〉1 ⊕ 〈ym〉1)},

and CS2 computes:

L1 = F(〈k〉1 , 〈x〉2)⊕ F(〈k〉2 , 〈y〉2)

= {F(〈k1〉1 , 〈x1〉2)⊕ F(〈k1〉2 , 〈y1〉2), · · · ,
F(〈km〉1, 〈xm〉2)⊕ F(〈km〉2, 〈ym〉2)}

= {F(k1, 〈x1〉2 ⊕ 〈y1〉2), · · · ,F(km, 〈xm〉2 ⊕ 〈ym〉2)},

After that, CS1 uses the PRF array L1 and a random
number array s1 = {s1, s2, · · · , sm}, which are produced
by a PRG(·) seeded with s, to interpolate a polynomial P(·)
in lines 12-14. The coefficients of P(·) are sent to CS2. Then,
CS2 takes the calculated PRF array L2 as the inputs of P(·)
to obtain the array s2 = {s′1, s′2, · · · , s′m}.

If yi = xi (1 ≤ i ≤ m), from the fact 〈yi〉2 ⊕ 〈yi〉1 =
〈xi〉2⊕〈xi〉1, we can get 〈yi〉1⊕〈xi〉1 = 〈yi〉2⊕〈xi〉2. So the
PRF values of them equal to each other, i.e., F(k1, 〈yi〉1 ⊕
〈xi〉1) = F(k1, 〈yi〉2 ⊕ 〈xi〉2). It is remarked that for an
authenticated client who is granted access to intersection
result of x and y, it suffices to collect s1 (from CS1) and s2
(from CS2). Then the client will compare elements si and
s′i: si = s′i implies that the element xi is also in the array y.
Therefore, the client can obtain x ∩ y.

5.4 The Secret-Shared Oblivious Shuffling Protocol

The SOSF Protocol aims to shuffle the original XOR-
shared arrays 〈db〉1 = {〈db1〉1, · · · , 〈dbn〉1} and 〈db〉2 =
{〈db1〉2, · · · , 〈dbn〉2} into two new XOR-shared arrays〈
db′
〉
1

= {
〈
dbπ2π1(1)

〉
1
, · · · ,

〈
dbπ2π1(n)

〉
1
} and

〈
db′
〉
2

=
{
〈
dbπ2π1(1)

〉
2
, · · · ,

〈
dbπ2π1(n)

〉
2
}, where the permutation

function π1 is only held by CS1 and π2 is only held by CS2.
As shown in Algorithm 2, we can realize the SOSF Protocol
based on the circuit-based swapping technique introduced
in Sec. 4.

In Algorithm 2, CS1 first prepares a swap circuit, de-
noted as C1

swap, with inputs of a random array u and a
permutation function π1 as lines 1-4. Then CS2 works as a
circuit evaluator with inputs of a random array r to compute
π1(u ⊕ r) in line 7. After that, CS2 permutes the array
π1(u⊕ r) with π2 to obtain a random array π2π1(u⊕ r), and
takes it as a new share of 〈db〉. For correctness, CS1 needs to
obtain the array π2π1(〈db〉 ⊕ u⊕ r) as its new share of 〈db〉.
To this end, CS1 generates another swap circuit C2

swap with
inputs of a random array v and the permutation function
π1. Thus, CS2 can evaluate π1(〈db〉2 ⊕ r ⊕ v) in lines 15-
16. After that, CS2 prepares the last swap circuit C3

swap with
inputs of π1(〈db〉2 ⊕ r ⊕ v) and a permutation function π2.
Upon receiving C3

swap, CS1 inputs π1(〈db〉1 ⊕ u ⊕ v) and
obtains π2π1(db ⊕ u ⊕ r) in lines 21-23. Clearly, neither of
the servers can recover the original index of db, and no
information about db is revealed to servers.

1

Algorithm 1: Distributed Intersection Computation
Require:
CS1: two shared arrays 〈x〉1, 〈y〉1;
CS2: two shared arrays 〈x〉2, 〈y〉2.

Ensure:
CS1: an array s1;
CS2: an array s2.

1: CS1 and CS2:
2: CS1 acts as Odk-PRF’s receiver with input arrays 〈x〉1;
3: CS2 acts as Odk-PRF’s sender and obtains a key array:
〈k〉2 = {〈k1〉2, · · · , 〈km〉2};

4: CS1 obtains:
F(〈k〉2 , 〈x〉1) = {F(〈k1〉2 , 〈x1〉1), · · · ,F(〈km〉2 , 〈xm〉1)};

5: CS2 calculates:
F(〈k〉2 , 〈y〉2) = {F(〈k1〉2 , 〈y1〉2), · · · ,F(〈km〉2 , 〈ym〉2)};

6: CS2 acts as Odk-PRF’s receiver with input arrays 〈x〉2;
7: CS1 acts as Odk-PRF’s sender and obtains a key array:
〈k〉1 = {〈k1〉1, · · · , 〈km〉1};

8: CS2 obtains:
F(〈k〉1, 〈x〉2) = {F(〈k1〉1, 〈x1〉2), · · · ,F(〈km〉1 , 〈xm〉2)};

9: CS1 calculates:
F(〈k〉1, 〈y〉1) = {F(〈k1〉1 , 〈y1〉1), · · · ,F(〈km〉1 , 〈ym〉1)};

10: CS1:
11: Calculates:

F(〈k〉1 , 〈x〉1)⊕ F(〈k〉2, 〈y〉1)
12: Generates m random values:

s1 = {s1, · · · , sm} ← PRG(s);
13: Interpolates a degree (m− 1) polynomial P(·) over points:

(F(k1, 〈x1〉1 ⊕ 〈y1〉1), s1), · · · , (F(km, 〈xm〉1 ⊕ 〈ym〉1), sm);
14: Sends the coefficient of polynomial P(·) to CS2.
15: CS2:
16: Calculates:

F(〈k〉1, 〈x〉2)⊕ F(〈k〉2, 〈y〉2)
17: Evaluates the polynomial P(·) with m inputs:

F(k1, 〈x1〉2 ⊕ 〈y1〉2), · · · ,F(km, 〈xm〉2 ⊕ 〈ym〉2);
18: Collects all the output as a set:

s2 = {s′1, · · · , s′m}.

5.5 PriRanGe Description
With the above building blocks, we are ready to present

the full-fledged design for range-constrained intersection on
genomic data.
Step 1: Constraining a queried range. During this process,
two servers first process their own data from C and DBP
locally. For CS1, it has two sets 〈q.pos〉1 = {〈qi.pos〉1}mi=1

and 〈db.pos〉 = {〈dbj .pos〉1}nj=1, and then it XORs all the
shares in those two sets one by one to get a new array Tr1 =
{Trij1 }m,ni=1,j=1, where Trij1 = 〈qi.pos〉1 ⊕ 〈dbj .pos〉1. Simi-
larly, CS2 performs the same computation on its private two
sets 〈q.pos〉2 and 〈db.pos〉2 to obtain Tr2 = {Trij2 }m,ni=1,j=1,
where Trij2 = 〈qi.pos〉2 ⊕ 〈dbj .pos〉2.

Next, the two servers interactively constrain the queried
range of DBP ’s data without leaking the plaintext of the
queried range and DBP ’s data. We utilize Yao’s garbled
circuit to realize a function that securely executes a con-
ditional statement. This interactive operation is shown in
Algorithm 3.

In this algorithm, the functionality EQ(·) represents the
equality test. The output of this process is a 0/1 array
τ , which represents whether the corresponding shares of
servers are within the queried range. Therefore, CS1 (resp.
CS2) can determine a shared array of DBP ’s genomic
variants, denoted as 〈dbα〉1 = {〈dbt1〉1 , · · · , 〈dbtm〉1} (resp.
〈dbα〉2 = {〈dbt1〉2, · · · , 〈dbtm〉2}). For example, if τ [i][j] =

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3205700

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:27:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8
2

Algorithm 2: Secret-shared Oblivious Shuffling
Require:
CS1: 〈db〉1 = {〈db1〉1, ..., 〈dbn〉1},

two random vectors u = {u1, ..., un},
v = {vq, ..., vn},
a permutation πq .

CS2: 〈db〉2 = {〈db1〉2, ..., 〈dbn〉2},
a random vector r = {r1, ..., rn},
a permutation π2.

Ensure:
CS1:

〈
db′〉

1
= {

〈
dbπ2π1(1)

〉
1
, · · · ,

〈
dbπ2π1(n)

〉
1
};

CS2:
〈
db′〉

2
= {

〈
dbπ2π1(1)

〉
2
, · · · ,

〈
dbπ2π1(n)

〉
2
}.

1: CS1:
2: Prepares the swap circuit C1

swap, and π1 is control bits;
3: Takes u = {u1, ..., un} as the input of C1

swap;
4: Gives C1

swap to CS2.
5: CS2:
6: Takes r = {r1, ..., rn} as the input of C1

swap;
7: Computes:

π1(u⊕ r) = {uπ1(1) ⊕ rπ1(1), ..., uπ1(n) ⊕ rπ1(n)};
8: Permutes π1(u⊕ r) with π2.
9: Takes π2π1(u⊕ r) as

〈
db′〉

2
.

10: CS1:
11: Prepares the swap circuit C2

swap, and π1 is control bits;
12: Takes v = {vq, ..., vn} as C2

swap’s input,
13: Give C2

swap to CS2.
14: CS2:
15: Takes 〈db〉2 ⊕ r as the input of C2

swap;
16: Computes π1(〈db〉2 ⊕ r⊕ v);
17: Prepares the swap circuit C3

swap, and π2 is control bits;
18: Takes π1(〈db〉2 ⊕ r⊕ v) as the input of C3

swap;
19: Gives C3

swap to CS1.
20: CS1:
21: Takes π1(〈db〉1 ⊕ u⊕ v) as the input of C3

swap;
22: Computes:

π2π1(〈db〉1 ⊕ 〈db〉2 ⊕ u⊕ v⊕ v⊕ r)
= π2π1(db⊕ u⊕ r);

23: Takes π2π1(db⊕ u⊕ r) as
〈
db′〉

1
.

Algorithm 3: Range Constraint
Require:
CS1 inputs Tr1;
CS2 inputs Tr2.

Ensure:
CS1 outputs an array τ [ ][ ].

1: CS1 and CS2:
2: for i from 1 to m
3: for j from 1 to n
4: if EQ(Trij1 ,Trij2 )
5: τ [i][j] == 1
6: else
7: τ [i][j] == 0
8: return τ ;

2

Algorithm 2: Secret-shared Oblivious Shuffling
Require:
CS1: 〈db〉1 = {〈db1〉1, ..., 〈dbn〉1},

two random vectors u = {u1, ..., un},
v = {vq, ..., vn},
a permutation πq .

CS2: 〈db〉2 = {〈db1〉2, ..., 〈dbn〉2},
a random vector r = {r1, ..., rn},
a permutation π2.

Ensure:
CS1:

〈
db′〉

1
= {

〈
dbπ2π1(1)

〉
1
, · · · ,

〈
dbπ2π1(n)

〉
1
};

CS2:
〈
db′〉

2
= {

〈
dbπ2π1(1)

〉
2
, · · · ,

〈
dbπ2π1(n)

〉
2
}.

1: CS1:
2: Prepares the swap circuit C1

swap, and π1 is control bits;
3: Takes u = {u1, ..., un} as the input of C1

swap;
4: Gives C1

swap to CS2.
5: CS2:
6: Takes r = {r1, ..., rn} as the input of C1

swap;
7: Computes:

π1(u⊕ r) = {uπ1(1) ⊕ rπ1(1), ..., uπ1(n) ⊕ rπ1(n)};
8: Permutes π1(u⊕ r) with π2.
9: Takes π2π1(u⊕ r) as

〈
db′〉

2
.

10: CS1:
11: Prepares the swap circuit C2

swap, and π1 is control bits;
12: Takes v = {vq, ..., vn} as C2

swap’s input,
13: Give C2

swap to CS2.
14: CS2:
15: Takes 〈db〉2 ⊕ r as the input of C2

swap;
16: Computes π1(〈db〉2 ⊕ r⊕ v);
17: Prepares the swap circuit C3

swap, and π2 is control bits;
18: Takes π1(〈db〉2 ⊕ r⊕ v) as the input of C3

swap;
19: Gives C3

swap to CS1.
20: CS1:
21: Takes π1(〈db〉1 ⊕ u⊕ v) as the input of C3

swap;
22: Computes:

π2π1(〈db〉1 ⊕ 〈db〉2 ⊕ u⊕ v⊕ v⊕ r)
= π2π1(db⊕ u⊕ r);

23: Takes π2π1(db⊕ u⊕ r) as
〈
db′〉

1
.

Algorithm 3: Range Constraint
Require:
CS1 inputs Tr1;
CS2 inputs Tr2.

Ensure:
CS1 outputs an array τ [ ][ ].

1: CS1 and CS2:
2: for i from 1 to m
3: for j from 1 to n
4: if EQ(Trij1 ,Trij2 )
5: τ [i][j] == 1
6: else
7: τ [i][j] == 0
8: return τ ;

1, CS1 and CS2 learn that their shares 〈dbj〉1 and 〈dbj〉2 are
within the queried range, and 〈dbj〉1⊕〈dbj〉2 = 〈dbj〉 ∈ dbα.

According to Yao’s garbled circuit, the circuits evaluator
runs OT protocol with the circuits generator to obliviously
obtain its garbled inputs associated with its private inputs.
Then the evaluator evaluates the garbled circuits to get final
results. If the final result can be public, the evaluator will

directly send the results to the generator. In our setup, CS1
and CS2 can be either the circuits generator or the circuits
evaluator. Besides, we consider the final output is public to
both servers.
Step 2: Computing distributed intersection. In this step,
we utilize our DIC protocol. The two shared input arrays
of CS1 (resp. CS2) is 〈q.v〉1 = {〈q1.v〉1, · · · , 〈qm.v〉1} and
〈dbα.v〉1 = {〈dbt1 .v〉1, · · · , 〈dbtm .v〉1} (resp. 〈q.v〉2 and
〈dbα.v〉2), which are corresponding to the arrays 〈x〉1 and
〈y〉1 (resp. 〈x〉2 and 〈y〉2) in Algorithm 2.

As shown in this algorithm, upon receiving the PRF
values of each element in the shared array 〈q.v〉1 obliviously
(line 4), CS1 acts as Odk-PRF’s sender to get a key array
〈k〉1 and computes KeyEval(〈k〉1 , 〈dbα.v〉1) (lines 7, 9).
Similarly, CS2 acts as Odk-PRF’s sender to get a key array
〈k〉2 and computes KeyEval(〈k〉2 , 〈dbα.v〉2) (lines 3, 5), then
it receives the PRF values of each element in the shared
array 〈q.v〉2 obliviously (line 8). After that, CS1 calculates
F(〈k〉2 , 〈q.v〉1) ⊕ F(〈k〉1 , 〈dbα.v〉1) and selects a random
array s1 to interpolate a polynomial P(·), whose coefficients
are sent to CS2 (lines 11-14). Next, CS2 calculates the PRF
values of the array F(〈k〉1 , 〈q.v〉2)⊕ F(〈k〉2 , 〈dbα.v〉2) and
takes them as P(·)’s input. Then CS2 obtains the evaluated
results s2 (line 18). s1 and s2 are sent to the queried client,
who is able to tell which variants of his/her query array are
within the queried range of DBP ’s database db.

To sum up, the size of intersection and the shares owned
by each server are private for another server. The security
and correctness of this protocol are based on the properties
of Odk-PRF.
Step 3: Shuffling the outsourced database. Once the CS1
and CS2 returned the queried results to C, CS1 and CS2 can
perform the SOSF protocol with each other to shuffle the
database.

Overall, this protocol aims to protect C’s access pattern
since it breaks the link of the queried range in multiple
queries. And the unlinkability of each query is able to
prevent servers from inferring the plaintext of genomic data
via statistical approaches. It is worth mentioning that, in real
implementation, the SOSF protocol can be executed offline,
i.e., multiple versions of the shuffled databases are prepared
in advance and a different shuffled instance is used for
each query. This implementation trick improves efficiency
without sacrificing security of the access pattern.

6 SECURITY ANALYSES

Our PriRanGe protocol allows a client to launch a query
in a database over the clouds, therefore, we formalize
our security analyses in the simulation-based real/ideal
world model [45, 46]. According to the definition of
simulation-based proof, the security of a protocol reduces
to the indistinguishability of the adversaries’ views in
real/ideal worlds. The real world view (i.e., input, internal
randomness, received messages from the other party) of a
semi-honest attacker is from the execution of the PriRanGe
protocol in the real world, and the view of the adversaries
in the ideal world is simulated based on the inputs and
outputs of the corresponding party in real world. Therefore,
we will define the leakage of PriRanGe protocol and
formalize the ideal world. Then, we can simulate the

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3205700

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:27:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

adversaries’ view in ideal world. Before that, let us firstly
take look at the formal definition of security requirements.
We employ the composition theory mentioned in [38, 47, 48]
to prove the security of in the semi-honest model.

Definition 2. Suppose that a protocol Π securely implements
a function f(x, y), where x, y are the inputs of parties A and
B, respectively. Let viewA(x, y) = (x, rA,m1, · · · ,mk) and
viewB(x, y) = (y, rB,m1, · · · ,mk) to denote the views of A
and B respectively during the execution of Π, where rA and
rB represent randomness of A and B, and mi denotes the i-
th message passed between the two parties. Let OA(x, y) and
OB(x, y) be Π’s output for A and B. Then we say the protocol
Π is secure against semi-honest adversaries if for any probabilistic
polynomial-time (PPT) adversary there exist PPT simulators S1
and S2 such that:

(S1(x, f(x, y)), f(x, y))≈c(viewA(x, y),OA(x, y)),

(S2(y, f(x, y)), f(x, y))≈c(viewB(x, y),OB(x, y)),
(1)

where ≈c denotes computational indistinguishability.

Inputs of CS1 and CS2: in our scheme, CS1 and CS2 are
considered to be potential adversaries. So the information
input to them are defined as follows.
• Inputs to CS1, denoted as L1, includes: one share of

the query sequences 〈q〉1 = {〈qi〉1}mi=1; one share of the
database 〈db〉1 = {〈dbj〉1}mj=1; the swap circuit Cswap
with the permutation π1;

• Inputs to CS2, denoted as L2, includes: another share
of the query sequences 〈q〉2 = {〈qi〉2}mi=1; another share
of the database 〈db〉2 = {〈dbj〉2}mj=1; the swap circuit
Cswap with the permutation π2.

According to the above information, we construct two
simulators S1 and S2 to simulate the real world view of CS1
and CS2. For Probability Polynomial Time (PPT) adversaries
A1 (who corrupts CS1) and A2 (who corrupts CS2), their
participation in the ideal world and interactions with the
simulators are characterized as the following experiments:
• In Step 1, the adversary A1 computes the circuit of

functionality EQ(·) with S1.
• In Step 2, the adversary A1 chooses two shared input

arrays 〈q.v〉1 and 〈dbα.v〉1, and sends 〈q.v〉1 to S1.
On receiving the message from A1, S1 randomly sets
〈k〉sim and sends a PRF value Fsim(〈k〉sim , 〈q.v〉1) for
A1.

• In Step 3, the adversary A1 selects control bits φ1
and a random array u = {u1, · · · , un} as the input of
the swap circuit C1

swap to S1. On receiving the circuit
C1
swap, S1 will randomly generate the simulated values〈
db′
〉sim
2

, and sends the simulated swap circuit Csimswap
to A1.

Similarly, the interactions of A2 and the simulator S2
can be defined to produce the simulated view for A2. Note
that, in the semi-honest threat model, the adversaries A1

and A2 will not corrupt the two servers CS1 and CS2 at
the same time. Therefore, we only need to consider the
scenarios where two clouds are respectively corrupted by
two adversaries.

Next, we give the proof that the simulated views of A1

andA2 is indistinguishable from what S1 and S2 simulated,
respectively. We note that secret-sharing operations and the

garbled circuits in our PriRanGe protocol are secure under
the semi-honest model. The EQ test and the swap circuits are
applications of Yao’s garbled circuits, whose formal security
proof can be found in [49]. Besides, the security of Odk-PRF
is based on the OT extension [25, 28]. With these facts, the
security proof of our protocols is presented as follows.

Theorem 6.1. As long as the Odk-PRF and secret-sharing
operations are secure against semi-honest adversaries, the DIC
protocol is secure under the semi-honest model.

Proof. DIC protocol includes the generation of PRF values,
the data transferred between CS1 and CS2 and a polynomial
interpolation operations. Since the Odk-PRF generation is
secure against semi-honest adversaries, any PPT adversaries
cannot distinguish the simulator’s views from the Odk-
PRF outputs. Thus A1 can not distinguish the PRF value
F(〈k〉2 , 〈q.v〉1) and the value Fsim(〈k〉sim , 〈q.v〉1) simu-
lated by S1. After CS1 obtains PRF values after performing
OPRF with CS2, there is no data that transferred from CS2
to CS1. A1 who corrupts CS1 can not distinguish its views
in real and ideal worlds. Secondly, the simulator S2 will
simulate A2’s view L2. Therefore, S2 computes a (m − 1)
polynomial P′(·) with m randomly selected points. A2 can
not distinguish P′(·) and P(·). In conclusion, because S1
(resp. S2) can simulate A1’s (resp. A2’s) view, the DIC
protocol is secure under the semi-honest model.

Theorem 6.2. As long as secret-sharing operations, garbled
circuits are secure against semi-honest adversaries, the SOSF
protocol is secure under the semi-honest model.

Proof. To prove the security of SOSF protocol, we first
construct a simulator S1 to simulate A1’s view. In real
world, the message C3

swap that A1 received in line 19 of
Algorithm 2 needs to be simulated. Then, S1 prepares the
swap circuits Csimswap, whose inputs are m randomly picked
strings {R1, · · · , Rm} ⊂ Zl2 and a permutation function π′.
Recall that C3

swap is formed by garbled circuits for random-
izing and shuffling the input of A1, the outputs of C3

swap

are random from A1’s view. So A1 cannot distinguish the
evaluation results of C3

swap and Csimswap. Next, we construct
a simulator S2 to simulate A2’s view. Similar to the case of
A1, S2 also constructs swap circuits with randomly picked
inputs to simulate the messages CS2 received in lines 4 and
13 of Algorithm 3. To conclude, because S1 (resp. S2) can
simulate A1’s (resp. A2’s) view, the SOSF protocol is secure
under the semi-honest model.

Besides, we also need to analyze that PriRanGe can meet
the security requirements as stated before.
Database/query confidentiality. We only need to consider
data confidentiality for the two servers (CS1 and CS2) and
the client C, because DBP remains offline after uploading
the shares of db. PriRanGe consists of constraining a queried
range via Yao’s garbled circuit, and performing DIC and
SOSF protocols, all of which are provable secure as shown
above. The database and query are thus confidential to the
two servers. For C, he/she receives results s1 and s2 from
CS1 and CS2, respectively. Note that s1 and s2 are two
sets of random string, which reveals nothing other than the
desirable intersection result.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3205700

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:27:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Access pattern protection. Access pattern refers to how db
is accessed upon receiving C’s query. If CS1 and CS2 observe
multiple queries, they can record access patterns associated
with different queries. For example, the most frequently
accessed range (though the range and variants within the
range are still confidential) may be linked with certain
most common diseases. However, in our SOSF protocol,
two servers will continuously shuffle the database share for
every query. The pattern of how the data shares are accessed
has been refreshed after each protocol instance. Therefore,
the recorded pattern of CS1 and CS2 will become uniform.

7 PERFORMANCE EVALUATION

In this section, we analyze the performance of our Pri-
RanGe protocol in terms of running time, computation and
communication cost. Besides, we also compare PriRanGe
protocol with Sun’s range query protocol [4]. To clarify the
efficiency of our protocol, we also make a comparison be-
tween existing shuffling method [17] and our SOSF protocol.

We implement all protocols in C++, specifically, garbled
circuit and swap circuits are constructed by ABY framework
[50] and Odk-PRF is achieved by libOTe [51].

Our experiments are conducted on a computer equipped
with an AMD Ryzen 5 3600 3.60GHz CPU and 16GB of
memory. With this computer, all tests are performed on two
virtual Linux machines in the same Local Area Network
(LAN). One of the virtual machine is used as CS1 and
the other serves as CS2. And these two parties are con-
nected to the local host with 1Gbps bandwidth and a 0.3ms
Round-Trip Time (RTT) for the LAN setting. Specifically,
we measure the total communication cost for all the mes-
sages transmitted between by CS1 and CS2, including the
onetime setup cost incurred by keys generation and base-
OT initialization. We measure the end-to-end running time
as the time of transferring messages between two servers
under the LAN setting.

In our experiments, we used Homo Sapiens Mitochon-
drion Complete Genome in NCBI [52] that consists of 16570
positions, and each position has a nucleotide. Therefore, it
takes 17 bits to represent a genomic item in our experiments,
which includes a position and a base letter. And we set
symmetric security parameter λ = 128. To evaluate the
scalability of our protocol, we expand our database to 100
times (million size) the original size.

TABLE 3: Running time of basic operations on XOR-shared
data.

Operations Stage Average

Equality test Time (µs) 1.69

Comm (byte) 262.23

Odk-PRF Time (µs) 0.52

Comm (byte) 20.48

Swap circuit Time (µs) 10.56

Comm (byte) 1.53

7.1 Asymptotic Analyses
In this section, we will analyze the performance of

each basic operation on XOR-shared data in PriRanGe. As

described in Sec. 5.5, CS1 and CS2 need to perform a
functionality EQ(·) in Step 1. Since each share of the query
array and array in database needs to be computed and
compared one by one, this complexity is O(mn). Therefore,
we test this functionality based on Yao’s garbled circuit
in ABY framework [50], and use SIMD operations [53] to
speed up this process. Then, in Step 2, we evaluate the
efficiency of the DIC protocol, which is mainly based on
Odk-PRF. For each server, it runs an Odk-PRF protocol with
another server, then it can obtain m PRF values with m
keys since this protocol is based on OT extension. So its
complexity is linear with the size of query array, i.e., O(m).
Besides, there is also a process of polynomial computation
in our DIC protocol. The computation cost of computing a
m point-value polynomial is O(mlogm2). Therefore, we can
compute the computation cost of our DIC protocol, which
is O(mlogm2). Compare to the proposed secure (Genome-
wide Range Query) GRQ search protocol in [4], the compu-
tation complexity of GRQ isO(mlgn), wherem is the size of
query array and n is the total short sequences in database.
Finally, the servers perform SOSF protocol with each other
to shuffle their database in Step 3. The SOSF protocol is
mainly based on the swap circuit, and CS1 and CS2 will use
three swap circuits. The complexity is thus O(3n) and linear
with the size of database. To facilitate description of each
basic operation in our protocol, we further test the running
time and communication cost of the basic operations on
secrete shared data, the results for a single running instance
are shown in Table 3. Clearly, Step 1 (with complexity
O(mn)) will occupy much more time and communication
cost than that of Step 2 (with complexity O(m)) and Step
3 (with complexity O(3n)) due to the differences in cost of
their basic operations.

7.2 Experimental Performance

In this section, we analyze the performance of our Pri-
RanGe protocol experimentally. The computation time and
communication cost of Step 1 and Step 2 of PriRanGe are
listed in Table 4, and the efficiency of Step 3 is depicted in
Fig. 5(a) and Fig. 5(b).

TABLE 4: The running time and communication cost of Step
1 and Step 2 (m is the size of queried array and n is the
dataset size).

Number of Variants Stage Step 1 Step 2

m = 50
n = 16570

Time (s) 1.45 0.064

Comm (MB) 207.21 0.041

m = 100
n = 16570

Time (s) 2.90 0.093

Comm (MB) 414.42 0.061

m=200
n=16570

Time (s) 5.87 0.18

Comm (MB) 828.85 0.083

m = 300
n = 16570

Time (s) 8.74 0.25

Comm (MB) 1243.27 0.011

m = 500
n = 16570

Time (s) 14.57 0.42

Comm (MB) 2072.11 0.15

We consider different sizes of queried range of C, which
ism = {50, 100, 200, 300, 500}. In Step 1, CS1 and CS2 need

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3205700

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:27:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1000 5000 10000 16570 33140

T
im

e:
 S

ec
o

n
d

s

Number of Genomic Data in Database

Cheng et al.

SOSF

0

3

6

9

12

15

1000 5000 10000 16570 33140

T
im

e:
 S

ec
o
n

d
s SOSF

0

100

200

300

400

500

600

700

100 300 500 1000

T
im

e:
 S

ec
o

n
d

s

Size of Query Range

Sun et al.

PriRanGe

(a) The performance of oblivious shuffling pro-
tocols.

0
100
200
300
400
500
600
700
800

N 2N 3N 5N 10N 50N 100N

Ti
m

e:
 S

ec
on

ds

Size of Database

SOSF

(b) The performance of SOSF protocol.

0
100
200
300
400
500
600
700
800

N 2N 3N 5N 10N 50N 100N

Ti
m

e:
 S

ec
on

ds

Size of Database

SOSF

0

100

200

300

400

500

600

700

100 300 500 1000

Ti
m

e:
 S

ec
on

ds

Different Range Size

Sun et al.

PriRanGe

PriRanGe without SOSF

(c) The performance comparison.

Fig. 5: The performance evaluation of our protocols.

to constrain a queried range in the database, which requires
mn times EQ(·) operations. In Step 2, CS1 and CS2 execute
the DIC protocol. The DIC protocol includes the evaluation
of 2m times OPRF and the operations of a polynomial with
order m − 1, and the executing time and communication
cost of DIC is irrelevant to the size of n. As a result, the
DIC protocol is more efficient than previous range query
schemes [4] because the running time of computing the
intersection of a certain range is irrelevant to the database
size.

To explain our protocol in more detail, we give a running
time and communication cost in Step 1 and Step 2 as
depicted in Table 4. It is clear that the cost of Step 1 increases
linearly with respect to mn and the cost of Step 2 increases
linearly with respect tom, which agrees with the asymptotic
analyses in Section 7.1.

In Step 3, the servers perform the SOSF protocol to
shuffle the database. This process can be executed offline,
since CS1 and CS2 can prepare lots of shuffled databases
before C launches a query. Then the two servers use a
new shuffled database after they returned a queried result
to C. The performance of SOSF is shown in Fig. 5(a).
We compare the time efficiency of our shuffling protocol
with the shuffling protocol in [17], which employs Paillier
homomorphic encryption scheme [54] to achieve the same
functionality as our SOSF protocol. Our SOSF protocol uses
O(n log n) symmetric-key operations and does not involve
time-consuming operations, and the shuffling protocol in
[17] involves totally 2n encryptions, 2n homomorphic and
n multiplications over Paillier cryptosystem. As shown in
Fig. 5(a), SOSF is faster than the method in [17] by a
magnitude of 3. Besides, we evaluate our SOSF protocol on
a million size database. As presented in Fig 5(b), n equals
to the size of the database (16570). When the database has
16570× 100 (1 million) items, the running time of shuffling
process is around 11 minutes.

Furthermore, we present the overall running time of the
PriRanGe protocol in Fig. 5(c) through comparing it to the
protocol in [4]. In Fig. 5(c), we compare the range query
protocol in [4] with our PriRanGe protocol and PriRanGe
without the SOSF protocol. It is worth noting that the SOSF
protocol is responsible for hiding data access patterns, Sun
et al. did not consider access pattern protection. And the
comparison to the method in [17] is not included since their

shuffling protocol is too slow as tested above. Considering
the different range sizes of both protocols, the most time-
consuming process of the work in [4] is the index process-
ing and loading. As shown in Fig. 5(c), for different size
of query range, i.e., m ∈ [100, 1000], and fixed dataset
size n = 16, 570, our design consistently outperforms the
method in [4].

8 DISCUSSION

In this section, we will present some discussion on
the practical application and advantages of our protocols,
as well as its potential to support different queries with
scaleablity. In our paper, we have proposed two sub-
protocols (DIC and SOSF) and use those protocols as build-
ing blocks to form our PriRanGe protocol. We can utilize
those two sub-protocols for other scenarios and support
other kinds of queries, since those protocols are of inde-
pendent interest.

For the DIC protocol, it aims to achieve a range-
constrained intersection query for genomic data in the out-
sourced setting. It can also be applied for generic range
query. Consider a scenario where a client has a query array
x and wants to launch a range query in an outsourced
database db of a database provider, that is, to check whether
each element of x is in the specific range of db or not.
We can apply our DIC protocol to this scenario. Note that,
the client and the database can also play the roles of CS1
and CS2 in our model. In this regard, the client and the
database provider invoke our DIC protocol locally rather
than in the outsourced setting. Meanwhile, different from
the traditional secure range query method, the queried
range is kept private in our protocol. For the SOSF protocol,
it achieves the functionality that shuffles the original secret-
shared array to newly secret-shared arrays between two
parties. As stated in [17], the shuffling protocol can hide data
access patterns, since the indices of items in the database
are kept private to prevent inference attacks. Therefore, our
SOSF protocol can be used as a building block and applied
to other secret-shared two-cloud based protocols for hiding
data access patterns. In conclusion, our sub-protocols are
generic and can be transplanted to other types of privacy-
preserving queries.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3205700

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:27:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

9 CONCLUSION

In this paper, we have proposed a privacy-preserving
range-constrained intersection query scheme over out-
sourced genomic data. Besides query and database confi-
dentiality, the extra feature of the proposed PriRanGe pro-
tocol is access pattern protection. Importantly, these strong
security guarantees are mostly achieved by symmetric en-
cryptions. We theoretically proved that PriRanGe is secure
under the semi-honest model. Further experimental results
demonstrate that PriRanGe is faster than constructions us-
ing asymmetric encryption by a magnitude of 3, and also
faster than certain symmetric constructions which have
complex indexing structures.

10 ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers
for their valuable comments that contributed to the im-
proved quality of this paper. Jian Weng was partially sup-
ported by National Key R&D Plan of China (Grant Nos.
2020YFB1005600), National Natural Science Foundation of
China (Grant Nos. 61825203 and U1736203), Major Program
of Guangdong Basic and Applied Research Project (Grant
No. 2019B030302008), and Guangdong Provincial Science
and Technology Project(Grant Nos. 2019B010137002 and
2017B010111005).

REFERENCES

[1] S. J. Heerema and C. Dekker, “Graphene nanodevices
for DNA sequencing,” Nature Nanotechnology, vol. 11,
no. 2, pp. 127–136, 2016.

[2] G. Danezis and E. De Cristofaro, “Fast and private ge-
nomic testing for disease susceptibility,” in Proceedings
of the 13th ACM Workshop on Privacy in the Electronic
Society, 2014, pp. 31–34.

[3] A. Khan and A. Mathelier, “Intervene: A tool for inter-
section and visualization of multiple gene or genomic
region sets,” BMC Bioinformatics, vol. 18, no. 1, pp. 1–8,
2017.

[4] W. Sun, N. Zhang, W. Lou, and Y. T. Hou, “When
gene meets cloud: Enabling scalable and efficient range
query on encrypted genomic data,” in INFOCOM.
IEEE, 2017, pp. 1–9.

[5] X. Ding, E. Ozturk, and G. Tsudik, “Balancing security
and privacy in genomic range queries,” in Proceedings
of the 18th ACM Workshop on Privacy in the Electronic
Society, 2019, pp. 106–110.

[6] K. El Emam, E. Jonker, L. Arbuckle, and B. Malin, “A
systematic review of re-identification attacks on health
data,” PloS One, vol. 6, no. 12, p. e28071, 2011.

[7] N. Homer, S. Szelinger, M. Redman, D. Duggan,
W. Tembe, J. Muehling, J. V. Pearson, D. A. Stephan,
S. F. Nelson, and D. W. Craig, “Resolving individuals
contributing trace amounts of dna to highly complex
mixtures using high-density snp genotyping microar-
rays,” PLoS genetics, vol. 4, no. 8, p. e1000167, 2008.

[8] N. Von Thenen, E. Ayday, and A. E. Cicek, “Re-
identification of individuals in genomic data-sharing
beacons via allele inference,” Bioinformatics, vol. 35,
no. 3, pp. 365–371, 2019.

[9] R. Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar,
“Fast and scalable range query processing with strong
privacy protection for cloud computing,” IEEE/ACM
Transactions On Networking, vol. 24, no. 4, pp. 2305–
2318, 2015.

[10] C. Zuo, S. Sun, J. K. Liu, J. Shao, J. Pieprzyk, and
L. Xu, “Forward and backward private dsse for range
queries,” IEEE Transactions on Dependable and Secure
Computing, 2020.

[11] J. Liang, Z. Qin, S. Xiao, J. Zhang, H. Yin, and K. Li,
“Privacy-preserving range query over multi-source
electronic health records in public clouds,” Journal of
Parallel and Distributed Computing, vol. 135, pp. 127–139,
2020.

[12] E. De Cristofaro, S. Faber, and G. Tsudik, “Secure
genomic testing with size-and position-hiding private
substring matching,” in Proceedings of the 12th ACM
Workshop on Privacy in the Electronic Society, 2013, pp.
107–118.

[13] J. S. Sousa, C. Lefebvre, Z. Huang, J. L. Raisaro,
C. Aguilar-Melchor, M.-O. Killijian, and J.-P. Hubaux,
“Efficient and secure outsourcing of genomic data stor-
age,” BMC Medical Genomics, vol. 10, no. 2, pp. 15–28,
2017.

[14] G. Asharov, S. Halevi, Y. Lindell, and T. Rabin,
“Privacy-preserving search of similar patients in ge-
nomic data.” Proc. Priv. Enhancing Technol., vol. 2018,
no. 4, pp. 104–124, 2018.

[15] M. M. Al Aziz, M. Z. Hasan, N. Mohammed, and D. Al-
hadidi, “Secure and efficient multiparty computation
on genomic data,” in Proceedings of the 20th International
Database Engineering & Applications Symposium, 2016,
pp. 278–283.

[16] M. Nassar, Q. Malluhi, M. Atallah, and A. Shikfa,
“Securing aggregate queries for DNA databases,” IEEE
Transactions on Cloud Computing, vol. 7, no. 03, pp. 827–
837, 2019.

[17] K. Cheng, Y. Hou, and L. Wang, “Secure similar se-
quence query on outsourced genomic data,” in Pro-
ceedings of the 2018 on Asia Conference on Computer and
Communications Security, 2018, pp. 237–251.

[18] T. Schneider and O. Tkachenko, “EPISODE: Efficient
privacy-preserving similar sequence queries on out-
sourced genomic databases,” in Proceedings of the 2019
ACM Asia Conference on Computer and Communications
Security, 2019, pp. 315–327.

[19] Y. Zheng, H. Cui, C. Wang, and J. Zhou, “Privacy-
preserving image denoising from external cloud
databases,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 6, pp. 1285–1298, 2017.

[20] Z. Shan, K. Ren, M. Blanton, and C. Wang, “Practical
secure computation outsourcing: A survey,” ACM Com-
puting Surveys (CSUR), vol. 51, no. 2, pp. 1–40, 2018.

[21] Z. Zhang, K. Wang, W. Lin, A. W.-C. Fu, and R. C.-W.
Wong, “Practical access pattern privacy by combining
PIR and oblivious shuffle,” in Proceedings of the 28th
ACM International Conference on Information and Knowl-
edge Management, 2019, pp. 1331–1340.

[22] J. Yao, Y. Zheng, Y. Guo, and C. Wang, “Sok: A system-
atic study of attacks in efficient encrypted cloud data
search,” in Proceedings of the 8th International Workshop

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3205700

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:27:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

on Security in Blockchain and Cloud Computing, 2020, pp.
14–20.

[23] S. Wu, Q. Li, G. Li, D. Yuan, X. Yuan, and C. Wang,
“Servedb: Secure, verifiable, and efficient range queries
on outsourced database,” in 2019 IEEE 35th Interna-
tional Conference on Data Engineering (ICDE). IEEE,
2019, pp. 626–637.

[24] A. Abadi, S. Terzis, R. Metere, and C. Dong, “Effi-
cient delegated private set intersection on outsourced
private datasets,” IEEE Transactions on Dependable and
Secure Computing, vol. 16, no. 4, pp. 608–624, 2019.

[25] T. Duong, D. H. Phan, and N. Trieu, “Catalic: Delegated
PSI cardinality with applications to contact tracing,” in
International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2020, pp.
870–899.

[26] X. Yi, M. G. Kaosar, R. Paulet, and E. Bertino, “Single-
database private information retrieval from fully ho-
momorphic encryption,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 25, no. 5, pp. 1125–1134,
2012.

[27] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi,
and D. Wichs, “Onion ORAM: A constant bandwidth
blowup oblivious RAM,” in Theory of Cryptography
Conference. Springer, 2016, pp. 145–174.

[28] V. Kolesnikov and R. Kumaresan, “Improved OT ex-
tension for transferring short secrets,” in Annual Cryp-
tology Conference. Springer, 2013, pp. 54–70.

[29] M. J. Atallah and J. Li, “Secure outsourcing of sequence
comparisons,” International Journal of Information Secu-
rity, vol. 4, no. 4, pp. 277–287, 2005.

[30] X. Li, Y. Zhu, J. Wang, and J. Zhang, “Efficient and
secure multi-dimensional geometric range query over
encrypted data in cloud,” Journal of Parallel and Dis-
tributed Computing, vol. 131, pp. 44–54, 2019.

[31] X. Teng, J. Yang, J.-S. Kim, G. Trajcevski, A. Züfle,
and M. A. Nascimento, “Fine-grained diversification of
proximity constrained queries on road networks,” in
Proceedings of the 16th International Symposium on Spatial
and Temporal Databases, 2019, pp. 51–60.

[32] Y. Zheng, R. Lu, S. Zhang, Y. Guan, J. Shao,
F. Wang, and H. Zhu, “Pmrq: Achieving efficient
and privacy-preserving multi-dimensional range query
in ehealthcare,” IEEE Internet of Things Journal, 2022,
doi=10.1109/JIOT.2022.3158321.

[33] Y. Zheng, R. Lu, Y. Guan, J. Shao, and H. Zhu, “Towards
practical and privacy-preserving multi-dimensional
range query over cloud,” IEEE Trans. Dependable Secur.
Comput., 2021.

[34] W. Li, J. Guan, and S. Zhou, “Efficiently evaluating
range-constrained spatial keyword query on road net-
works,” in International Conference on Database Systems
for Advanced Applications. Springer, 2014, pp. 283–295.

[35] V. Kolesnikov, M. Rosulek, and N. Trieu, “SWiM: Se-
cure wildcard pattern matching from OT extension,”
in International Conference on Financial Cryptography and
Data Security. Springer, 2018, pp. 222–240.

[36] Y. Huang, D. Evans, and J. Katz, “Private set inter-
section: Are garbled circuits better than custom pro-
tocols?” in NDSS, 2012.

[37] M. Chase, E. Ghosh, and O. Poburinnaya, “Secret-

shared shuffle,” in International Conference on the Theory
and Application of Cryptology and Information Security.
Springer, 2020, pp. 342–372.

[38] K. Cheng, L. Wang, Y. Shen, Y. Liu, Y. Wang, and
L. Zheng, “A lightweight auction framework for spec-
trum allocation with strong security guarantees,” in
INFOCOM. IEEE, 2020, pp. 1708–1717.

[39] T. Schneider and O. Tkachenko, “Towards efficient
privacy-preserving similar sequence queries on out-
sourced genomic databases,” in Proceedings of the 2018
Workshop on Privacy in the Electronic Society, 2018, pp.
71–75.

[40] D. Wang and P. Wang, “Two birds with one stone:
Two-factor authentication with security beyond con-
ventional bound,” IEEE transactions on dependable and
secure computing, vol. 15, no. 4, pp. 708–722, 2016.

[41] Q. Wang, D. Wang, C. Cheng, and D. He, “Quantum2fa:
efficient quantum-resistant two-factor authentication
scheme for mobile devices,” IEEE Transactions on De-
pendable and Secure Computing, 2021.

[42] Z. Zhang, Y. Wang, and K. Yang, “Strong authentication
without temper-resistant hardware and application to
federated identities.” in NDSS, 2020.

[43] L. Chen, K. Huang, M. Manulis, and V. Sekar,
“Password-authenticated searchable encryption,” Inter-
national Journal of Information Security, vol. 20, no. 5, pp.
675–693, 2021.

[44] M. Ball, T. Malkin, and M. Rosulek, “Garbling gadgets
for boolean and arithmetic circuits,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, 2016, pp. 565–577.

[45] M. J. Freedman, C. Hazay, K. Nissim, and B. Pinkas,
“Efficient set intersection with simulation-based secu-
rity,” Journal of Cryptology, vol. 29, no. 1, pp. 115–155,
2016.

[46] Y. Lindell, “How to simulate it–a tutorial on the sim-
ulation proof technique,” Tutorials on the Foundations of
Cryptography, pp. 277–346, 2017.

[47] J. Yu, K. Ren, and C. Wang, “Enabling cloud storage
auditing with verifiable outsourcing of key updates,”
IEEE transactions on information forensics and security,
vol. 11, no. 6, pp. 1362–1375, 2016.

[48] Z. Li, D. Wang, and E. Morais, “Quantum-safe round-
optimal password authentication for mobile devices,”
IEEE Transactions on Dependable and Secure Computing,
2020.

[49] Y. Lindell and B. Pinkas, “A proof of security of Yao’s
protocol for two-party computation,” Journal of Cryptol-
ogy, vol. 22, no. 2, pp. 161–188, 2009.

[50] D. Demmler, T. Schneider, and M. Zohner, “ABY-A
framework for efficient mixed-protocol secure two-
party computation.” in NDSS, 2015.

[51] “libOTe,” https://github.com/osu-crypto/libOTe.
[52] “Homo sapiens mitochondrion, complete genome,”

https://www.ncbi.nlm.nih.gov/nuccore/251831106.
[53] “ABY Framework,” https://github.com/

encryptogroup/ABY.
[54] C. Hazay, G. L. Mikkelsen, T. Rabin, T. Toft, and A. A.

Nicolosi, “Efficient rsa key generation and threshold
paillier in the two-party setting,” Journal of Cryptology,
vol. 32, no. 2, pp. 265–323, 2019.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3205700

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:27:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Yaxi Yang received the B.E. degree from the
School of Electronics and Information Engineer-
ing, Jinan University, Zhuhai, China, in 2017.
She is currently working toward the Ph.D. degree
with the School of Information Science and Tech-
nology, Jinan University, Guangzhou, and her
research interests include applied cryptography
and secure multi-party computation.

Yao Tong is an adjunct professor in the South
China University of Technology, GuangZhou.
Currently, she is the CEO of Guangzhou Fong-
well Data Limited Company. Her research inter-
ests include big data applications.

Jian Weng received the Ph.D. degree in com-
puter science and engineering from Shanghai
Jiao Tong University, in 2008. From 2008 to
2010, he held a post-doctoral position with the
School of Information Systems, Singapore Man-
agement University. He is currently a Professor
and the Dean with the College of Information
Science and Technology, Jinan University. His
research interests include public key cryptog-
raphy, cloud security, blockchain, etc. He has
published over 100 papers in cryptography and

security conferences and journals, such as CRYPTO, EUROCRYPT,
ASIACRYPT, TCC, PKC, TPAMI, TIFS, and TDSC. He served as a PC
co-chairs or PC member for more than 30 international conferences.
He also serves as associate editor of IEEE Transactions on Vehicular
Technology.

Yufeng Yi received the B.E. degree from
the School of Medical Information Engineer-
ing, Guangdong Pharmaceutical University,
Guangzhou, China, in 2018. He is currently
working toward the M.E. degree with the School
of Cyber Security, Jinan University, Guangzhou,
and his research interests include applied cryp-
tography and secure multi-party computation.

Yandong Zheng received her M.S. degree from
the Department of Computer Science, Beihang
University, China, in 2017 and she is currently
pursuing her Ph.D. degree in the Faculty of Com-
puter Science, University of New Brunswick,
Canada. Her research interest includes cloud
computing security, big data privacy and applied
privacy.

Leo Yu Zhang (M’17) is currently a Lecturer with
the School of Information Technology, Deakin
University, VIC, Australia. He received the bach-
elor’s and master’s degrees in computational
mathematics from Xiangtan University, Xiang-
tan, China, in 2009 and 2012, respectively, and
the Ph.D. degree from the City University of
Hong Kong, Hong Kong, in 2016. Prior to joining
Deakin, he held various research positions with
the City University of Hong Kong, the Univer-
sity of Macau, Macau, China, the University of

Ferrara, Ferrara, Italy, and the University of Bologna, Bologna, Italy.
His current research interests include applied cryptography and AI-
related security, and he has published more than 60 refereed journal
and conference articles in these fields.

Rongxing Lu (S’09-M’11-SM’15-F’21) is a Uni-
versity Research Scholar, an associate profes-
sor at the Faculty of Computer Science (FCS),
University of New Brunswick (UNB), Canada.
Before that, he worked as an assistant profes-
sor at the School of Electrical and Electronic
Engineering, Nanyang Technological University
(NTU), Singapore from April 2013 to August
2016. Rongxing Lu worked as a Postdoctoral
Fellow at the University of Waterloo from May
2012 to April 2013. He was awarded the most

prestigious “Governor General’s Gold Medal”, when he received his
PhD degree from the Department of Electrical & Computer Engineering,
University of Waterloo, Canada, in 2012; and won the 8th IEEE Com-
munications Society (ComSoc) Asia Pacific (AP) Outstanding Young Re-
searcher Award, in 2013. Dr. Lu is an IEEE Fellow. His research interests
include applied cryptography, privacy enhancing technologies, and IoT-
Big Data security and privacy. He has published extensively in his areas
of expertise (with H-index 78 from Google Scholar as of Jan 2022), and
was the recipient of 9 best (student) paper awards from some reputable
journals and conferences. Currently, Dr. Lu serves as the Chair of IEEE
ComSoc CIS-TC (Communications and Information Security Technical
Committee), and the founding Co-chair of IEEE TEMS Blockchain and
Distributed Ledgers Technologies Technical Committee (BDLT-TC). Dr.
Lu is the Winner of 2016-17 Excellence in Teaching Award, FCS, UNB.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3205700

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:27:28 UTC from IEEE Xplore.  Restrictions apply. 


